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We present the hypothesis tests and the corresponding sample size estimation formulas by 

the type of study design and type of outcome.  

1. Randomized controlled trials  

The majority of RCTs in clinical research are parallel-group trials.  An analysis of the 

RCTs indexed in PubMed between 2000 and 2006 found that 78% were parallel, and 16% were 

crossover 1. For brevity, we restrict discussion to the sample size estimation of the parallel 

design. We refer to the book by Chow et al. 2 for other subtypes of RCT designs and refer to 3,4 

for non-randomized interventional studies.  

In a parallel RCT, the outcome of interest could be a continuous, dichotomous, or a time-

to-event variable. There are three commonly-used types of trials using a parallel RCT design: 

non-inferiority, equivalence, and superiority trials 5. A non-inferiority trial aims to demonstrate 

that a new treatment is not worse than an active control treatment already in use by a small pre-

specified amount. This amount is known as the non-inferiority margin. An equivalence trial is to 

show that the true treatment difference lies between a lower and an upper equivalence margin of 

clinically acceptable differences. When an RCT aims to show that one treatment is superior to 

another, the trial (test) is called a superiority trial (test). 

In many RCT designs, more participants are randomized to the treated group than to the 

control group. This imbalance may encourage people to join in a trial because their chance of 

being randomized to the treated group is greater than to the control group. When we present the 

formulas for RCTs below, we denote k be the ratio of the sample size of treatment group 𝑛! to 

the sample size of control group 𝑛" , so that 𝑛! = 𝑘𝑛" . 

1.1 Continuous outcomes 

• Non-inferiority design  
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The testing hypotheses are:  

𝐻#:	𝜇! − 𝜇" ≤	−𝛿 vs. 𝐻$:	𝜇! − 𝜇" >	−𝛿 

where 𝛿 > 0 denotes the non-inferiority margin, which is a (clinically meaningful) minimal 

detectable difference. The sample sizes are 2  

𝑛" = -1 +
1
𝑘0 𝜎

% -
𝑧$&' + 𝑧$&(
𝑑 + 𝛿 0

%

; 𝑛! = 𝑘𝑛"  

where 𝜎% is the variance, and 𝑑 = 𝜇! − 𝜇"  is known as the allowable difference, which is the 

true mean difference between the new treatment group (𝜇!) and the control group (𝜇"). In many 

applications, 𝑑 is set to be zero. The 𝑧) denotes the standard normal deviate, i.e. 𝑃6𝑍 < 𝑧)9 =

1 − 𝛾. A standard normal deviate is a realization of a standard normal random variable. For 

example, the 𝑧$&( is 0.84 at 80% power and 1.28 at 90% power. 

• Equivalence design  

The testing hypotheses are:  

𝐻#:	|𝜇! − 𝜇"| ≥ 	𝛿 vs. 𝐻$: |𝜇! − 𝜇"| < 	𝛿 

where 𝛿 > 0 denote the equivalence margin. We have  

𝑛" = -1 +
1
𝑘0 𝜎

% -
𝑧$&' + 𝑧$&(/%

𝛿 − |𝑑| 0
%

; 𝑛! = 𝑘𝑛" . 

• Superiority design  

The testing hypotheses are:  

𝐻#:	𝜇! − 𝜇" ≤ 	𝛿 vs. 𝐻$:	𝜇! − 𝜇" > 	𝛿 

where 𝛿 > 0 denote the superiority margin. We have 

𝑛+ = -1 +
1
𝑘0 𝜎

% -
𝑧$&' + 𝑧$&(
𝑑 − 𝛿 0

%

; 𝑛! = 𝑘𝑛" . 

1.2 Dichotomous outcomes – based on proportion difference 
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• Non-inferiority design  

The testing hypotheses are 

𝐻#:	𝑝! − 𝑝" ≤	−𝛿 vs. 𝐻$:	𝑝! − 𝑝" >	−𝛿 

where 𝛿 > 0 denote the non-inferiority margin. We have 2 

𝑛+ = -
𝑧$&' + 𝑧$&(
𝑑 + 𝛿 0

%

?
𝑝!(1 − 𝑝!)

𝑘 + 𝑝"(1 − 𝑝")B ; 𝑛! = 𝑘𝑛"  

where 𝑑 = 𝑝! − 𝑝"  is the difference between the true response rates of the new treatment group 

(𝑝!) and the control group (𝑝"). 

• Equivalence design  

The testing hypotheses are: 

𝐻#: |𝑝! − 𝑝"| ≥ 	𝛿 vs. 𝐻$: |𝑝! − 𝑝"| < 	𝛿 

where 𝛿 > 0 denote the equivalence margin. We have 

𝑛+ = -
𝑧$&' + 𝑧$&(/%

𝛿 − |𝑑| 0
%

?
𝑝!(1 − 𝑝!)

𝑘 + 𝑝"(1 − 𝑝")B ; 𝑛! = 𝑘𝑛" . 

• Superiority design  

The testing hypotheses are: 

𝐻#:	𝑝! − 𝑝" ≤ 	𝛿 vs. 𝐻$:	𝑝! − 𝑝" > 	𝛿 

where 𝛿 > 0 denote the superiority margin. We have 

𝑛+ = -
𝑧$&' + 𝑧$&(
𝑑 − 𝛿 0

%

?
𝑝!(1 − 𝑝!)

𝑘 + 𝑝"(1 − 𝑝")B ; 𝑛! = 𝑘𝑛" . 

1.3 Dichotomous outcomes – based on odds ratio 

Odds ratio has been frequently used to assess the association between a binary exposure 

variable and a binary disease outcome. The odds ratio between the treatment and the control is 

defined as  
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𝑂𝑅 =
𝑝!(1 − 𝑝")
𝑝"(1 − 𝑝!)

. 

In RCTs, it is often of interest to investigate the odds ratio of a treatment for the disease under 

study. 

• Non-inferiority design  

The testing hypotheses are: 

𝐻#:	𝑂𝑅 ≤ exp(−𝛿)	   vs.   𝐻$:	𝑂𝑅 > exp(−𝛿). 

Note that here 𝛿 > 0 denote the non-inferiority margin in log-scale. We have 2 

𝑛+ = -
𝑧$&' + 𝑧$&(
log	(𝑂𝑅) + 𝛿0

%

?
1

𝑘𝑝!(1 − 𝑝!)
+

1
𝑝"(1 − 𝑝")

B ; 𝑛! = 𝑘𝑛" . 

• Equivalence design  

The testing hypotheses are: 

𝐻#: |log	(𝑂𝑅)| ≥ 𝛿	   vs.   𝐻$:	|log	(𝑂𝑅)| < 𝛿. 

where 𝛿 > 0 denote the equivalence margin in log-scale. We have 

𝑛" = -
𝑧$&' + 𝑧$&(/%
𝛿 − |log(𝑂𝑅) |0

%

?
1

𝑘𝑝!(1 − 𝑝!)
+

1
𝑝"(1 − 𝑝")

B ; 𝑛! = 𝑘𝑛" . 

• Superiority design  

The testing hypotheses are: 

𝐻#:	𝑂𝑅 ≤ exp(𝛿)	   vs.   𝐻$:	𝑂𝑅 > 	exp	(𝛿) 

where 𝛿 > 0 denote the superiority margin in log-scale. We have 

𝑛" = -
𝑧$&' + 𝑧$&(
log(𝑂𝑅) − 𝛿0

%

?
1

𝑘𝑝!(1 − 𝑝!)
+

1
𝑝"(1 − 𝑝")

B ; 𝑛! = 𝑘𝑛" . 

1.4 Time-to-event outcomes – based on hazard ratio 

In clinical research, investigators may be interested in evaluating the effect of the test 

drug on the time to event. The analysis of time-to-event data is often referred to as survival 
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analysis. Basic concepts regarding survival and hazard functions in the analysis of time-to-event 

data can be found from Clark 6. Assuming that the proportional hazards assumption holds in a 

study, the hazard ratio is defined as 

𝐻𝑅 = 𝜆!(𝑡) 𝜆"(𝑡)⁄ , 𝑓𝑜𝑟	𝑡 ≥ 0,	 

where 𝜆!(𝑡) is the hazard for the treatment group and 𝜆"(𝑡) is the hazard for the control group.  

• Non-inferiority design  

The testing hypotheses are: 

𝐻#:	𝐻𝑅 ≤ exp(−𝛿)	   vs.   𝐻$:	𝐻𝑅 > 	exp	(−𝛿) 

where 𝛿 > 0 denote the non-inferiority margin in log-scale. Following the theoretical results by 

7,8, the total number of events (deaths) required in the two groups is 

(𝑘 + 1)%

𝑘 -
𝑧$&' + 𝑧$&(
log	(𝐻𝑅) + 𝛿0

%

. 

Let us assume that the probabilities that a person experiences an event in the control and 

treatment groups during the trial are 𝜋+ and 𝜋!, respectively. The combined probability of the 

event is then 𝜋 = (𝜋" + 𝜋!)/2. The sample sizes are given by 7: 

𝑛" =
𝑘 + 1
𝜋𝑘 -

𝑧$&' + 𝑧$&(
log(𝐻𝑅) + 𝛿0

%

; 𝑛! = 𝑘𝑛" . 

Investigators could have a reasonable guess for 𝜋+ and 𝜋! from previous studies. If there is no 

prior knowledge, one may assume an exponential survival model and estimate 𝜋+ and 𝜋! using 

explicit formulas (see Formula (3) in cohort studies below). 

• Equivalence design  

The testing hypotheses are: 

𝐻#: |log	(𝐻𝑅)| ≥ 𝛿	   vs.   𝐻$:	|log	(𝐻𝑅)| < 𝛿 

where 𝛿 > 0 denote the equivalence margin in log-scale. We have 
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𝑛" =
𝑘 + 1
𝜋𝑘 -

𝑧$&' + 𝑧$&(/%
δ − |log(𝐻𝑅) |0

%

; 𝑛! = 𝑘𝑛" . 

• Superiority design  

The testing hypotheses are: 

𝐻#:	𝐻𝑅 ≤ exp(𝛿)	   vs.   𝐻$:	𝐻𝑅 > 	exp	(𝛿) 

where 𝛿 > 0 denote the superiority margin in log-scale. We have 

𝑛" =
𝑘 + 1
𝜋𝑘 -

𝑧$&' + 𝑧$&(
log(𝐻𝑅) − 𝛿0

%

; 𝑛! = 𝑘𝑛" . 

2. Observational Studies 

Here we only discuss the sample size estimation for two-sided tests. One-sided tests for 

all cases below are dealt with by changing (1 − 𝛼/2) to (1 − 𝛼) in all equations. In 

observational studies, investigators often can obtain more samples in the control group than in 

the case group (in case-control studies) or in the unexposed group than in the exposed group (in 

cohort studies). This imbalance may encourage investigators to collect more data in a study (See 

our discussion in Section 7: Strategies for reducing sample size). Let 𝑛# be the sample size of the 

control/unexposed group and 𝑛$ be the sample size of the case/exposed group. We set 𝑘 to be the 

allocation ratio of the sizes of the two groups; that means 𝑛# = 𝑘𝑛$. 

2.1 Case-control study – Unmatched 

Case-control study is a study that compares patients who have a disease or outcome of 

interest (cases) with patients who do not have the disease or outcome (controls). It looks back 

retrospectively to compare how frequently the exposure to a risk factor is present in each group 

to determine the relationship between the risk factor and the disease. Denote 𝑝# the probability of 

exposure in the control group, and 𝑝$ the probability of exposure in the case group. We test 

𝐻#: 𝑝# = 𝑝$	   vs.   𝐻$:	𝑝# ≠ 𝑝$ 
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The above hypotheses are equivalent to 

𝐻#: 𝑂𝑅 = 1	   vs.   𝐻$:	𝑂𝑅	 ≠ 1, 

where 𝑂𝑅 = 𝑝$(1 − 𝑝#) (𝑝#(1 − 𝑝$))⁄  is the odds ratio between the case and control groups. 

The required sample sizes are 9 

 
𝑛$ =	

6𝑧$&' %⁄ X(𝑘 + 1)𝑝̅(1 − 𝑝̅) + 𝑧$&(X𝑝#(1 − 𝑝#) + 𝑘𝑝$(1 − 𝑝$))9
%

𝑘(𝑝$ − 𝑝#)%
, 𝑛# = 𝑘𝑛$ 

(1) 

where 𝑝̅ = (𝑘𝑝# + 𝑝$) (𝑘 + 1)⁄ . 

If one employs a correction for continuity (an adjustment that is made when a discrete 

distribution is approximated by a continuous distribution) in statistical analysis, one should use 

the modified formula 10: 

 
𝑛$,++ =

𝑛$
4 [1 +

\1 +
2(𝑘 + 1)

𝑘𝑛$|𝑝$ − 𝑝#|
]

%

, 𝑛#,++ = 𝑘𝑛$,++ . 
(2) 

In general situations, equation (2) is preferable to equation (1). 

2.2 Case-Control study – Matched 

The matched case-control study design has been commonly applied in public health 

research. Matching of cases and controls is employed to control the effects of known potential 

confounding variables. The sample size formula was developed by Dupont 11. To compute the 

sample size, we need to provide 𝛼, 𝛽, 𝑝#,	𝑝$, and the correlation coefficient 𝑟 for exposure in 

matched pairs of case-control patients. Note that due to the correlation of the paired samples, the 

original definition of odds ratio in the unmatched case-control study is not valid any more. The 

odds ratio for a matched case-control study is given by 

𝑂𝑅. =
𝑝$(1 − 𝑝#) − 𝑟X𝑝$(1 − 𝑝$)𝑝#(1 − 𝑝#)
𝑝#(1 − 𝑝$) − 𝑟X𝑝$(1 − 𝑝$)𝑝#(1 − 𝑝#)

	. 
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We test the following hypotheses: 

𝐻#: 𝑂𝑅. = 1	   vs.   𝐻$:	𝑂𝑅. 	≠ 1. 

The sample sizes are calculated by 

𝑛$ =
_1𝜎 𝑧$&' %⁄ + 𝑧$&(`

%

𝛿% , 𝑛# = 𝑘𝑛$, 

where 

𝛿 = $
/
_∑ 01!∙34

0∙3456&05$
6
07$ − 1` ,			𝜎 = b∑ 01!(6&05$)∙34

0∙3456&05$
6
07$ c

$/%
,    

𝑡0 = 𝑝$ -
𝑘

𝑗 − 10 𝑝#5
0&$(1 − 𝑝#5)6&05$ + (1 − 𝑝$) -

𝑘
𝑗0 𝑝#&

0 (1 − 𝑝#&)6&0,   𝑗 = 1,… , 𝑘, 

𝑝#5 = 𝑝# + 𝑟X(1 − 𝑝$)𝑝#(1 − 𝑝#)/𝑝$	, 𝑝#& = 𝑝# − 𝑟X𝑝$𝑝#(1 − 𝑝#)/(1 − 𝑝$). 

Note that 𝑟 can be estimated from previous studies. When 𝑟 is not known, Dupont 11 suggested 

that it is better to use a small arbitrary value, say 0.2, than it is to assume independence (a value 

of 0). 

2.3 Cohort study – Independent 

The sample size formula for an independent cohort study uses the same formula as in an 

unmatched case-control study 9,10. Now we assume 𝑝# is the probability of event in the 

unexposed group, and 𝑝$ is the probability of event in the exposed group. We shall test 

𝐻#: 𝑝# = 𝑝$	   vs.   𝐻$:	𝑝# ≠ 𝑝$ 

The above hypotheses are the same as  

𝐻#: 𝑅𝑅 = 1	   vs.   𝐻$:	𝑅𝑅	 ≠ 1, 

where 𝑅𝑅 = 𝑝$ 𝑝#⁄  is the relative risk between the exposed and the unexposed groups. The 

sample size equations are the same as equations (1) and (2) in the independent case-control 



 10 

study. If an investigator prefers to calculate the sample size based on the relative risk, we refer to 

Woodward’s formula 12, which is another representation of equation (1). 

2.4 Cohort study – Paired 

For paired cohort studies with dichotomous response variables, our primary interest may be 

the relative risk of an event between exposed and unexposed patients. It is possible to derive the 

sample size formula based on the relative risk in an analogous fashion to that of matched case-

control study by Dupont 11. However, here we present a simpler formula by Breslow and Day 13. 

Consider the paired sample for the exposed and unexposed groups, where 𝑛# = 𝑛$. We test  

𝐻#: 𝑅𝑅 = 1	   vs.   𝐻$:	𝑅𝑅	 ≠ 1, 

The sample size equation is given by 

𝑛# = 𝑛$ =
b12 𝑧$&' %⁄ +	𝑧(X𝑝∗(1 − 𝑝∗)c

%

𝑝;𝑝<(𝑝∗ − 0.5)%
, 

where 𝑝∗ = 𝑝</(𝑝; + 𝑝<), 𝑝; = 𝑝#(1 − 𝑝$) − 𝑟X𝑝$(1 − 𝑝$)𝑝#(1 − 𝑝#), and 𝑝< =

𝑝$(1 − 𝑝#) − 𝑟X𝑝$(1 − 𝑝$)𝑝#(1 − 𝑝#). The correlation coefficient 𝑟 can be estimated from 

previous studies. When 𝑟 is not known, we may use a small arbitrary value, for example 0.2. 

2.5 Cohort study – Time to event outcomes based on exponential survival model 

For the time-to-event outcome in an RCT, we presented a simple formula derived by 

Schoenfeld 7,8. We can obtain the expected number of events (deaths) in a trail by specifying the 

hazard odds under the alternative hypothesis. Investigators may follow a sufficient number of 

patients (by assuming the average probability that a person experiences an event during the trial) 

long enough so that the requisite number of events is attained. 

More often, we want to consider the following in the proper design of a cohort study with 

a time-to-event endpoint. Consider a two-arm prospective cohort study with accrual time period 
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𝑇; and the follow-up time period 𝑇<. Here the accrual period is the period of time that patients 

are entering the study, and the follow-up period denotes the period of time after accrual has 

ended before the final analysis is conducted. 

We assume that the proportional hazards assumption holds in the study. 

𝐻𝑅 = 𝜆$(𝑡) 𝜆#(𝑡)⁄ , 𝑓𝑜𝑟	𝑡 ≥ 0,	 

where 𝜆#(𝑡) is the hazard for the unexposed group and 𝜆$(𝑡) is the hazard for the exposed group. 

The testing hypotheses are 

𝐻#:	𝐻𝑅 = 1	   vs.   𝐻$:	𝐻𝑅 ≠ 1. 

Let 𝐷# and 𝐷$ be the expected number of events in the unexposed and exposed groups. 

Rubinstein et al. 14 showed the following relationship for the two-sided test with a significant 

level of 𝛼 and the power 𝛽: 

𝐷#&$ + 𝐷$&$ = i
log	(𝐻𝑅)

𝑧$&'/% + 𝑧$&(
j
%

. 

If we further assume the survival model is an exponential survival model, the probability 𝜋# or 

𝜋$ that a subject in the unexposed or exposed group experiences an event is given by 

 
𝜋= = 1 −

𝑒&>"!#61 − 𝑒&>"!$9
𝜆=𝑇;

,							𝑖 = 0,1. 
(3) 

With some algebra, the sample sizes are given by 15 

𝑛$ = -
1
𝑘𝜋#

+
1
𝜋$
0 -
𝑧$&'/% + 𝑧$&(

log𝐻𝑅 0
%

; 𝑛# = 𝑘𝑛$. 

2.6 Cross-sectional study 

Here we describe the sample size calculations where the problem is to compare the means 

of two independent samples in a cross-sectional study. To test 

𝐻#: 𝜇# = 𝜇$	   vs.   𝐻$:	𝜇# ≠ 𝜇$ 
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where 𝜇# and 𝜇$ are the means of the end-points in group one and group two. Let  𝑛# be the 

sample size in group one, 𝑛$ be the sample size in group two, 𝑘 = 𝑛$/𝑛% be the ratio of two 

sample sizes, and 𝜎% be the variance of the two samples (assumed common). We have 12 

 
𝑛$ = -1 +

1
𝑘0𝜎

% -
𝑧$&'/% + 𝑧$&(
𝜇# − 𝜇$

0
%

; 𝑛# = 𝑘𝑛$. 
(4) 

This formula (4) is also appropriate to the continuous outcomes in cohort studies and 

case-control studies, although the major end-point of interest of them is usually a proportion 

rather than a mean. For the dichotomous outcomes in cross-sectional studies, the sample size 

formulas (1) and (2) in the unmatched case-control study are also suitable here. 

2.7 Descriptive survey – Cross-sectional 

In descriptive studies, the purpose is to describe one or more characteristics in one 

particular group using means or proportions. Since the studies are not involved in hypothesis 

testing, we need to know the margin of error in order to compute sample size. The margin of 

error is defined as half the width (or “radius”) of a confidence interval for a particular statistic 

from a survey. It reflects how precise the statistic, such as mean or proportion, is expected to be.  

In studies designed to estimate a mean, the sample size equation 16 is given by 

𝑛 =
𝑧$&'/%% 𝜎%

𝑒% . 

where 𝜎% is the variance of the population, and 𝑒 is the margin of error of the mean. 

In studies designed to estimate a proportion, the sample size equation 16 is 

𝑛 =
𝑧$&'/%% 𝑝(1 − 𝑝)

𝑒% . 

where 𝑝 is the estimate of the proportion to be measured, and 𝑒 is the margin of error of the 

proportion. 
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